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A 3D Unstructured Mesh Euler Solver Based on the

Fourth-Order CESE Method

David L. Bilyeu ∗1,2, S.-T. John Yu †1, and Jean-Luc Cambier ‡2

1The Department of Mechanical and Aerospace Engineering, The Ohio State University,

Columbus, OH 43210
2Air Force Research Laboratory, Edwards Air Force Base, CA 93524

In this paper, the CESE method is extended and employed to construct a fourth-order, three-dimensional,
unstructured-mesh solver for hyperbolic Partial Differential Equations (PDEs). This new CESE method
retains all favorable attributes of the original second-order CESE method, including: (i) flux conservation in
space and time without using a one-dimensional Riemann solver, (ii) genuinely multi-dimensional treatment
without dimensional splitting (iii) the CFL constraint remains to be ≤ 1, and (iv) the use of a compact mesh
stencil involving only the immediate neighboring nodes surrounding the node where the solution is sought.
Two validation cases are presented. First higher order convergence is demonstrated by the linear advection
equation. Second super sonic flow over a spherical body is simulated to demonstrates the schemes ability to
accurately resolve discontinuities.

I. Introduction

Previously the CESE method has been expanded to higher order for both one-dimension,1, 2 and two-
dimensions.3 In this paper we further extend the CESE method to fourth-order accuracy in three-dimensions.
Similar to the original second-order CESE method, space and time are treated in a unified manner. Although
the present development is fourth-order the formulation to be presented in the paper is recursive and can be
straightforwardly extended to a sixth-, eighth-order or higher by including more terms in the Taylor series
expansion.

What makes the CESE scheme unique is due, in part, to the unified treatment of space and time as well as
how the space-time domain is discretized. In general, the space-time domain is divided into Solution Elements
(SEs) and Conservation Elements (CEs). In each SE the primary unknowns and fluxes are discretized and
represented by a third-order Taylor series. The CE area a series of non-overlapping regions that fill the entire
domain. These elements are mechanism in which flux conservation is enforced. The numerical integration is
aided by the discretized unknowns and fluxes defined in each SE. In general, CEs do not coincide with SEs.
By enforcing flux conservation over each CE, a set of algebraic equations in term of the unknown and its
spatial derivatives are derived. By solving the equations the solution at the next time step is calculated. As
will be shown in the following sections, the time-marching calculation of the three-dimensional fourth-order
CESE method is explicit.

The remainder of this paper is organized as follows. Section II presents the three-dimensional, fourth-
order CESE method and is divided into the following sub-sections: (A) properties of Taylor series, (B) the
calculation of the fluxes and their derivatives, (C) the calculation of the temporal derivatives of the conserved
variables, (D) space-time integration for conserved variables and their even derivatives (E) central differencing
approach for calculating the odd derivatives (F) outline of the numerical calculation. Section III reports the
numerical results by using the new four-order CESE method. At the end of the paper, we present the
concluding remarks and provide the list of the cited references.

∗Ph.D. Candidate of Mechanical Engineering, Email: bilyeu.4@osu.edu, AIAA Student Member.
†Associate Professor of Mechanical Engineering, Email: yu.274@osu.edu, AIAA Member.
‡Senior Aerospace Scientist, Email: jean-luc.cambier@edwards.af.mil , AIAA Member.
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II. Numerical Method

A three-dimensional hyperbolic equation is cast into the following vector form:

∂U

∂t
+

∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z
= 0 (1)

where U = (u1, u2, . . . , um)t,, Fx,y,z = (fx,y,z
1 , fx,y,z

2 , . . . , fx,y,z
m )t, and m is the number of equations in the

system. Each of the equations in Eq. (1) is a divergence-free condition: ∇ · hi = 0, where i = 1, . . . ,m and
hi = (fx

i , f
y
i , f

z
i , ui)

t is the space-time flux function. Here, the divergence operates in the four-dimensional
Euclidean space (x, y, z, t). Aided by Gauss’ theorem, the integral form of Eq. (1) becomes

∮

hi(x, y, z, t) · ds = 0. (2)

The CESE method is designed to integrate Eq. (2) in the space-time domain. In the numerical algorithm,
space and time are treated in a unified manner.

The geometry for a three-dimensional CESE method is more difficult to visualize than the one- and
two-dimensional methods because the integration is carried out in four-dimensions, three spatial and one
temporal. As such the CE and SE discretization will not be shown.

II.A. The Taylor Series Expansion

A Nth-order Taylor series expansion of the conserved variables ui inside a SE can be written in the following
form:

ui(x, y, z, t) =

N
∑

a=0

N−a
∑

b=0

N−

a−b
∑

c=0

N−

a−b−c
∑

d=0

∂a+b+c+dui

∂xa∂yb∂zc∂td
∆xa

a!

∆yb

b!

∆zc

z!

∆td

d!
(3)

where ∆x = x − xj , ∆y = y − yj, ∆z = z − zj, and ∆t = t − tn. The subscript j and the superscript n
are respectively the spatial and temporal anchoring point. For the fourth-order CESE method a third-order
Taylor expansion in space and time is employed, N = 3. Since the CESE scheme does not assume the

symmetry property of derivatives, e.g. ∂2u
∂x∂y and ∂2u

∂y∂x are two distinct variables, Eq. (3) is not initially

compatible with this assumption. In order to use Eq. (3) within our scheme the mixed derivatives needs to
be averaged. For example

∂3ui

∂x2∂z
≡

1

3

(

∂3ui

∂x∂x∂z
+

∂3ui

∂x∂z∂x
+

∂3ui

∂z∂x∂x

)

Moreover, a derivative of ui can also be expressed by a Taylor series expansion. All derivatives of ui in
Eq. (3) can be succinctly expressed by the following Taylor series expansion:

∂Cui

∂xI∂yJ∂zK∂tL
=

A
∑

a=0

A−a
∑

b=0

A−

a−b
∑

c=0

A−

a−b−c
∑

d=0

∂Bui

∂xI+a∂yJ+b∂zK+c∂tL+d

∆xa

a!

∆yb

b!

∆zc

c!

∆td

d!
(4)

where C = I + J +K + L,A = N − C, and B = C + a+ b + c+ d. Obviously, the Taylor series expansion
of ui, Eq. (3), is a special case of Eq. (4) with A = N and C = 0. Similarly, the fluxes, fx,y,z

i , and their
derivatives inside a SE are also discretized by the Taylor series expansion:

∂Cfx,y,z
i

∂xI∂yJ∂zK∂tL
=

A
∑

a=0

A−a
∑

b=0

A−

a−b
∑

c=0

A−

a−b−c
∑

d=0

∂Bfx,y,z
i

∂xI+a∂yJ+b∂zK+c∂tL+d

∆xa

a!

∆yb

b!

∆zc

c!

∆td

d!
(5)

where C and B have the same definitions as that in Eq. (4). When C = 0, Eq. (5) is the Taylor series
expansion of the flux fx,y,z

i itself.
The Taylor series coefficients listed in Eqs. (4) and (5) are the unknown variables that need to be

calculated as part of the Higher Order CESE method.
In the following derivation it will be shown that the only independent variables are the conserved variables

and their spatial derivatives. This requires that the fluxes and their derivatives as well as the temporal
derivatives of the conserved variables are functions of the conserved variables and their spatial derivatives.
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II.B. Flux Terms

In a previous paper,3 it was demonstrated that the flux terms and their spatial and temporal derivatives
can be expressed as functions of the conserved variables. This is accomplished through the Jacobian and
its derivatives or through a generalized Leibniz rule.4, 5 In short both of these methods demonstrated this
by recognizing that the flux functions and their derivatives can be written as functions of the conserved
variables, and their derivatives. The Jacobian method is more generic and as such will be used to show this
relationship.

Aided by the chain rule, the first derivatives of fx,y,z
i can be represented as

∂fx,y,z
i

∂Ψ1
=

m
∑

l=1

∂fx,y,z
i

∂ul

∂ul

∂Ψ1
, (6)

where Ψ1 = x, y, z, and t. On the right hand side of Eq. (6), ∂fx,y,z
i /∂ul is the Jacobian matrix, which

can be easily derived from the relationship between the fluxes and the conserved quantities. For the second
derivatives, we have

∂2fx,y,z
i

∂Ψ1∂Ψ2
=

m
∑

l=1

∂fx,y,z
i

∂ul

∂2ul

∂Ψ1∂Ψ2
+

m
∑

l=1

m
∑

p=1

∂2fx,y,z
i

∂ul∂up

∂ul

∂Ψ1

∂up

∂Ψ2
, (7)

where

(Ψ1,Ψ2) =

(x, x), (x, y), (x, z), (x, t),

(y, x), (y, y), (y, z), (y, t),

(z, x), (z, y), (z, z), (z, t),

and (t, t)

The second term on the right hand side of Eq. (7), ∂2fx,y,z
i /∂ul∂up is a m×m×m, matrix, which can be

readily derived based on the governing equations. For the third derivatives, we have

∂3fx,y,z
i

∂Ψ1∂Ψ2∂Ψ3
=

m
∑

l=1

∂fx,y,z
i

∂ul

∂3ul

∂Ψ1∂Ψ2∂Ψ3
+

m
∑

l=1

m
∑

p=1

∂2fx,y,z
i

∂ul∂up

(

∂2ul

∂Ψ1∂Ψ2

∂up

∂Ψ3
+

∂2ul

∂Ψ1∂Ψ3

∂up

∂Ψ2
+

∂2ul

∂Ψ2∂Ψ3

∂up

∂Ψ1

)

+

m
∑

l=1

m
∑

p=1

m
∑

q=1

∂3fx,y,z
i

∂ul∂up∂uq

∂ul

∂Ψ1

∂up

∂Ψ2

∂uq

∂Ψ3
,

(8)

(Ψ1,Ψ2,Ψ3) =

(x, x, x), (x, x, y), (x, x, z), (x, x, t), (x, y, x), (x, y, y), (x, y, z), (x, y, t), (x, z, x), (x, z, y), (x, z, z), (x, z, t),

(y, x, x), (y, x, y), (y, x, z), (y, x, t), (y, y, x), (y, y, y), (y, y, z), (y, y, t), (y, z, x), (y, z, y), (y, z, z), (y, z, t),

(z, x, x), (z, x, y), (z, x, z), (z, x, t), (z, y, x), (z, y, y), (z, y, z), (z, y, t), (z, z, x), (z, z, y), (z, z, z), (z, z, t),

(x, t, t), (y, t, t), (z, t, t), (t, t, t)

The last term on the right hand side of Eq. (8), ∂3fx,y,z
i /∂ul∂up∂uq is a m×m×m×m matrix, which

can be readily derived based in the definition of fx,y,z
i as functions of ui. Aided by Eqs. (6-8), we can relate

all derivatives of fx,y,z
i to the derivatives of ui.

II.C. Temporal Derivatives

As with the two-dimensional fourth-order CESE scheme3 the Cauchy-Kovalewski procedure for non-linear
equations is used to relate the temporal derivatives of the conserved variables to the conserved variables and
its spatial derivatives.
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To begin we let the Taylor series satisfy Eq. (1) at point (j, n),

(

∂ui

∂t

)n

j

= −

(

∂fx
i

∂x

)n

j

−

(

∂fy
i

∂y

)n

j

−

(

∂fz
i

∂z

)n

j

(9)

Each term in the above equation is a coefficient in a Taylor series. For conciseness the super- and sub-scripts,
i.e., j and n, indicating the space-time location are dropped in the following equations. Aided by Eq. (9),
the second-order derivatives of ui involving first-order time differentiation are readily available by assuming
that the following algebraic equations are valid:

∂2ui

∂x∂t
= −

∂2fx
i

∂x∂x
−

∂2fy
i

∂y∂x
−

∂2fz
i

∂z∂x
,

∂2ui

∂y∂t
= −

∂2fx
i

∂x∂y
−

∂2fy
i

∂y∂y
−

∂2fz
i

∂z∂y
,

∂2ui

∂z∂t
= −

∂2fx
i

∂x∂z
−

∂2fy
i

∂y∂z
−

∂2fz
i

∂z∂z
,

∂2ui

∂t∂t
= −

∂2fx
i

∂x∂t
−

∂2fy
i

∂y∂t
−

∂2fz
i

∂z∂t
,

(10)

Even though the final relation in Eq. (10) has a temporal derivative on the right hand side of the equation

it is still a function of spatial derivatives. As an example we look at the first term on the RHS
∂2fx

i

∂x∂t which
can be expressed as

∂2fx
i

∂x∂t
=

m
∑

l=1

∂fx
i

∂ul

∂2ul

∂x∂t
+

m
∑

l=1

m
∑

p=1

∂2fx
i

∂ul∂up

∂ul

∂x

∂up

∂t

= −

m
∑

l=1

∂fx
i

∂ul

(

∂2fx
i

∂x∂x
+

∂2fy
i

∂y∂x
+

∂2fz
i

∂z∂x

)

−

m
∑

l=1

m
∑

p=1

∂2fx
i

∂ul∂up

∂ul

∂x

(

∂fx
i

∂x
+

∂fy
i

∂y
+

∂fz
i

∂z

)

.

This procedure can also be applied to the other terms in the relation in Eq. (10).
For the third-order derivatives of ui involving first-order time differentiation, we assume that the following

equations are valid:

∂3ui

∂x∂Ψ∂t
= −

∂

∂Ψ

(

∂2fx
i

∂x∂x
+

∂2fy
i

∂y∂x
+

∂2fz
i

∂z∂x

)

,

∂3ui

∂y∂Ψ∂t
= −

∂

∂Ψ

(

∂2fx
i

∂x∂y
+

∂2fy
i

∂y∂y
+

∂2fz
i

∂y∂y

)

,

∂3ui

∂z∂Ψ∂t
= −

∂

∂Ψ

(

∂2fx
i

∂x∂z
+

∂2fy
i

∂y∂z
+

∂2fz
i

∂z∂z

)

,

∂3ui

∂t∂t∂t
= −

∂

∂t

(

∂2fx
i

∂x∂t
+

∂2fy
i

∂y∂t
+

∂2fz
i

∂z∂t

)

,

(11)

where Ψ = (x, y, z, t). Equation (11) has terms with multiple temporal derivatives on the RHS which can be
expressed in terms of spatial derivatives using the same approach used for Eq. (10).

Essentially, Eqs. (9-11) assume that the coefficients of Taylor series expansion for ui and fx,y,z
i satisfy

the additional higher-order equations, which are readily obtained by applying spatial differentiation to the
Euler equations Eq. (1). The procedure is recursive and can be readily extended to higher-order derivatives
of ui.

To recap, all the first-, second-, and third-order derivatives of ui and fx,y,z
i involving any order of time

differentiation can always be replaced by relationship formulated in terms of spatial derivatives of ui: This
is achieved by the following steps: (i) the additional equations shown in Eqs. (9-11), (ii) Eqs. (6-8), and
(iii) the chain rule as shown in Eqs. (6-8). As such, the independent variables in the fourth-order CESE
method include only the conserved variables ui with i = 1, 2, . . . ,m and their spatial derivatives. Table 1
lists the primary unknowns of the fourth-order CESE method.
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Table 1: The unknowns of a three-dimensional, fourth-order CESE method.

Even-order variables Odd-order variables

ui (ui)x (ui)y (ui)z

(ui)xx (ui)xxx (ui)xxy (ui)xxz

(ui)xy (ui)xyx (ui)xyy (ui)xyz

(ui)xz (ui)xzx (ui)xzy (ui)xzz

(ui)yx (ui)yxx (ui)yxy (ui)yxz

(ui)yy (ui)yyx (ui)yyy (ui)yyz

(ui)yz (ui)yzx (ui)yzy (ui)yzz

(ui)zx (ui)zxx (ui)zxy (ui)zxz

(ui)zy (ui)zyx (ui)zyy (ui)zyz

(ui)zz (ui)zzx (ui)zzy (ui)zzz

II.D. Space-Time Flux Conservation

In this section, the procedure of integration for space-time flux conservation is illustrated. The space-time
integration is used to calculate the conserved variables and their even derivatives. Furthermore, the method
presented in this section is applicable to any even derivative, As a reminder the integration is carried out in
four dimensions, three space and one time. To visualize the volume in which the integration takes place it
is easiest to think of it as a cube where each surface is really a volume. This volume has sides and as well as
a top and bottom region. To more easily present the integration it will be split up into two parts with the
first being the “side” hyperplanes and the second being the “top and bottom” hyperplanes. A hyperplane is
a generic term for any shape with n-1 dimensions that can split an n dimensional object. In two-dimensions
a hyperplane would be a line and in three-dimensions a hyperplane would be a surface.

The flux through the side and bottom faces are calculated from the known solution at the previous time
step at neighboring points of the current solution point. Therefore, the calculation for fluxes through side
and bottom surfaces are explicit. The flux through the top surface is a function of the solution at the new
time step.

Flux through Side Hyperplane

Figure 1 shows part of the side hyperplane. For a tetrahedral mesh there would be 6 of these hyperplanes
in one BCE giving a total of 24 side hyperplanes for the entire CE. The points Pi, i = 1, 2, 3 are at the
current time step while points P ′

i , i = 1, 2, 3 are at the next time step. Point Pi and P ′

i have the same spatial
coordinates but different temporal location.

bc

bcbc
bc

bcbc

×

P1

P2P3

P ′

1

P ′

2

P ′

3

Pj

x

yz
t

Fig. 1: The side face associated with a solution point
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To evaluate the integral in Eq. (2) we calculate the normal via

∣

∣

∣

∣

∣

∣

∣

∣

∣

î ĵ k̂ t̂

x2 − x1 y2 − y1 z2 − z1 t2 − t1

x3 − x1 y3 − y1 z3 − z1 t3 − t1

x′

1 − x1 y′1 − y1 z′1 − z1 t′1 − t1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= [Nx î, Ny ĵ, Nz k̂, 0 t̂] (12)

By applying Eq. (12) to Eq. (2) yields:

x,y,z
∑

xi

N
∑

a=0

N−a
∑

b=0

N−a−b
∑

c=0

N−a−b−c
∑

d=0

∂fxi

i

∂xa∂yb∂zc∂td
nxi

a!b!c!d!

∫

V 4D
S

(x− xj)
a
(y − yj)

b
(z − zj)

c
(t− tn)

d
dV 4

S , (13)

where V 4D
S represents the integration over the side hyperplane. This is the integration will have to be

repeated for each BCE. By noticing that the temporal integration is decoupled from the spatial integration
we can integrate the temporal terms separately. We can also represent the volume through a parametric
equation with two independent variables, e.g. x = x1 + (x2 − x1)u+ (x3 − x1)v. This leads to the equation,

x,y,z
∑

xi

N
∑

a=0

N−a
∑

b=0

N−

a−b
∑

c=0

N−a−
b−c
∑

d=0

∂fxi

i

∂xa∂yb∂zc∂td
N

(3)
xi

a!b!c!(d+ 1)!

(

∆t

2

)d+1 ∫ 1

0

∫ 1−u

0

[(x2 − x1)u+ (x3 − x1) v + x1 − xj ]
a

[(y2 − y1)u+ (y3 − y1) v + y1 − yj ]
b
[(z2 − z1)u+ (z3 − z1) v + z1 − zj ]

c
dvdu,

(14)

where

N̂ (3) =

∣

∣

∣

∣

∣

∣

∣

î ĵ k̂

x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

∣

∣

∣

∣

∣

∣

∣

(15)

The integral in Eq. (14) will be integrated for select combinations of a, b and c in Appendix A.

Flux through the Top and Bottom Hyperplane

To proceed, we present the calculation of the flux through the bottom hyperplane of the CE centered at
point Pi. The bottom hyperplane of the CE is located in the preceding time step n− 1/2. The calculation
of the flux through the bottom hyperplane of the CE requires integration over four triangular bipyramids.
A triangular bipyramid is a three-dimensional object consisting of two tetrahedrons that share a common
face. Figure 2 is a diagram of a portion of the top and bottom hyperplane. This shape is called a triangular
bipyramid which is composed of two tetrahedrons that share a common face. In this figure the common
face is shown in red while the blue edges makes up the tetrahedron associated with the neighboring cell and
the black edges are associated with the central cell. The point Pi is the current solution point, point P4 is
the neighboring cell center and the point Pj is the neighboring solution point. When integrating over the
bottom hyperplane the Taylor series is expanded from Pj but when integrating over the top hyperplane the
Taylor series is expanded from Pi. Since the geometry of the top and bottom hyperplanes is the same only
the derivation for the bottom hyperplane will be detailed.
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×
Pj

P1

P2

P4

P3

×Pi

Fig. 2: The bottom and top hyperplane

To evaluate the integral in Eq. (2) over the bottom and top hyperplane we need the normal which is

N̂ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

î ĵ k̂ t̂

x2 − x1 y2 − y1 z2 − z1 t2 − t1

x3 − x1 y3 − y1 z3 − z1 t3 − t1

x4 − x1 y4 − y1 z4 − z1 t4 − t1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

∣

x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

x4 − x1 y4 − y1 z4 − z1

∣

∣

∣

∣

∣

∣

∣

t̂. (16)

It should be noted that the normals in the i, j and k direction are all zero. Applying Eq. (16) to Eq. (2)
yields:

N
∑

a=0

N−a
∑

b=0

N−a−b
∑

c=0

∂a+b+cui

∂xa∂yb∂zc
nt

a!b!c!

∫

V 4D
B

(x− xj)
a
(y − yj)

b
(z − zj)

c
dV 4D

B , (17)

where nt is the normal component in the t direction. It should be noted that there is no time integration
in Eq. (17) because all points inside of the volume V 4D

B are at the same time step. To integrate Eq. (17)
we represent the volume into its parametric form. After applying the parametric transformation Eq (17)
becomes

N
∑

a=0

N−a
∑

b=0

N−a−b
∑

c=0

∂a+b+cui

∂xa∂yb∂zc
|J |nt

a!b!c!

∫ 1

0

∫ 1−u

0

∫ 1−u−v

0

(

[(x2 − x1)u+ (x3 − x1) v + (x4 − x1)w + x1 − xj ]
a

[(y2 − y1)u+ (y3 − y1) v + (y4 − y1)w + y1 − yj ]
b
[(z2 − z1)u+ (z3 − z1) v + (z4 − z1)w + z1 − zj ]

c
)

dwdvdu

(18)

where |J | = det(N̂). This leads to the simplification of |J |nt = N t. The integral in Eq. (18) will be integrated
for select combinations of a, b and c in Appendix B.
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To progress an even derivative to the next time step we need to apply either Eq. (18) or Eq. (14) to each
hyperplane in every BCE associated with the current cell (j, n) and then take the sum of all integrations.
For a tetrahedral mesh each cell has four BCEs and each BCE has three “side” hyperplanes, one “top”
hyperplane and one “bottom” hyperplane.

II.E. First Derivatives

In this section we detail the procedure used to calculate the first derivatives of the conserved variables.
The method used is very similar to the one used in the second-order scheme, the major difference is that a
third-order Taylor series is used instead of a first-order Taylor series. A brief outline used to calculate the
first derivatives is detailed below, for a complete derivation please see a second-order derivation.7, 8 As a
reminder the superscript and subscripts on the outside of a bracket represent the location where the Taylor
series coefficients are calculated at.

As a preface we will lay out the necessary geometry. First consider the current cell at location j0 and
the surrounding cells denoted by jr for r = 1, 2, . . . , Nb, where Nb is the number of neighbors. For a
tetrahedral mesh Nb would be 4. These cells exist at both the current time step, n, and the previous time
step n − 1/2 giving them the space-time location of (jr, n) r = 0, . . . , Nb for the current time step and
(jr, n− 1/2) r = 0, . . . , Nb for the previous time step. There are two important locations in each cell, (i) the
centroid denoted by j×r , (ii) the Taylor expansion point denoted by j+r . The derivation below is applicable
to any type of mesh, i.e. tetrahedral, hexagonal, prism, and four-sided pyramid, but for simplicity we will
restrict our examples to tetrahedral meshes. In what follows is an outline detailing each step required to
calculate the first derivatives.

1. Determine the location of the Taylor series expansion points using either the c-τ scheme detailed in8

or the edge based derivative (EBD) scheme.9

2. Perform Taylor series expansions from (j×0 , n) to each (j+r , n) r = 1, . . . , Nb.

[

u∗

i (j
+
r , n)

]n

j×0
=

A
∑

a=0

A−a
∑

b=0

A−a−b
∑

c=0

(

∂a+b+cui

∂xa∂yb∂zc

)n

j×0

(

xj+r
− xj×0

)a (

yj+r − yj×0

)b (

zj+r − zj×0

)c

a!b!c!
. (19)

By applying Eq (19) to each of the surrounding cells we obtain Nb equations with three+Nb unknowns
per governing equation. The unknowns are the first derivatives of the conserved variables and the
values of the conserved variables at the expansion points, [u∗

i (j
+, n)]

n
j×0

j = 1, . . . , Nb.

3. Next the unknowns at [u∗

i (j
+
r , n)]

n
j×0

are approximated by a Taylor series expansion from j×r at the

previous half time step to j+r at the current time step, i.e. [u∗

i (j
+
r , n)]

n
j×0

≈ [u′

i(j
+
r , n)]

n−1/2

j×r
where

[

u′

i(j
+, n)

]n−1/2

j×r
=

A
∑

a=0

A−a
∑

b=0

A−a−b
∑

c=0

A−a−b−c
∑

d=0

(

∂Bui

∂xa∂yb∂zc∂td

)n− 1
2

j×r

(

xj+r
− xj×r

)a (

yj+r − yj×r

)b (

zj+r − zj×r

)c

a!b!c!d!

(

∆t

2

)d

(20)

By substituting Eq. (20) into Eq. (19) and moving the unknowns to the LHS we get

[(ui)x]
n
j×0

∆xj+r
+ [(ui)y]

n
j×0

∆yj+r + [(ui)z ]
n
j×0

∆zj+r =

[

u′

i(j
+, n)

]n−1/2

j×
−

A
∑

a=0

A−a
∑

b=0

A−a−b
∑

c=0

(

∂a+b+cui

∂xa∂yb∂zc

)n

j×0

(

∆xj+r

)a (

∆yj+r

)b (

∆zj+r

)c

a!b!c!
,

(21)

where ∆xj+r
= xj+r

−xj×0
, ∆yj+r = yj+r − yj×0

, ∆zj+r = zj+r − zj×0
and (a, b, c) 6= (1, 0, 0), (0, 1, 0), (0, 0, 1).

4. By applying Eq. (21) to neighboring cells we have now have three unknowns and Nb equations which
leads to an overdetermined system. This is actually advantageous because it allows us to determine
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multiple solutions and then select the most appropriate solution. The possible solutions are determined
by grouping Eqs. (21) is sets of three to generate a potential solution. For example a tetrahedral mesh
has four surrounding cells and would be grouped as [(1, 2, 3), (1, 2, 4), (2, 3, 4)]. Taking the first triplet
from the set would result in the following equation:







∆x1+ ∆y1+ ∆z1+

∆x2+ ∆y2+ ∆z2+

∆x3+ ∆y3+ ∆z3+













(ui)
(1)
x

(ui)
(1)
y

(ui)
(1)
z






=















[u′

i(1
+, n)]

n−1/2
1× −

∑A
a=0

∑A−a
b=0

∑A−a−b
c=0

(

∂a+b+cui

∂xa∂yb∂zc

)n

j×0

(∆x
1+)

a
(∆y

1+)
b
(∆z

1+)
c

a!b!c!

[u′

i(2
+, n)]

n−1/2
2× −

∑A
a=0

∑A−a
b=0

∑A−a−b
c=0

(

∂a+b+cui

∂xa∂yb∂zc

)n

j×0

(∆x
2+)

a
(∆y

2+)
b
(∆z

2+)
c

a!b!c!

[u′

i(3
+, n)]

n−1/2
3× −

∑A
a=0

∑A−a
b=0

∑A−a−b
c=0

(

∂a+b+cui

∂xa∂yb∂zc

)n

j×0

(∆x
3+)

a(∆y
3+)

b(∆z
3+)

c

a!b!c!















for (a, b, c) 6= (0, 1, 0), (1, 0, 0), (0, 0, 1).

(22)

Using Eq (22) on all of systems of equations will generate multiple solutions to (ui)x, (ui)y and (ui)z .
The superscript (1) for the unknowns in Eq (22) represents the first possible solution for (ui)x, (ui)y
and (ui)z .

5. The final step is to weight the possible solutions together to get the optimum solution. Any of the pre-
viously derived weighting schemes are applicable to the higher order CESE method with out requiring
any changes. In the present investigation the W28 and S210 schemes are used.

II.F. Order of Calculation

In this subsection we list the order in which each derivatives is calculated. Since both the even and odd
derivatives requires information from the current time step the order in which the various derivatives are
updated is important to ensure that the procedure is explicit. We will limit this procedure to a fourth-order
scheme but the this method can be easily expanded to sixth-, eighth- or even higher orders of accuracy. For
a fourth-order scheme this is the order in which the values are calculated.

1. Temporal derivatives of the conserved variables and the fluxes and their spatial and temporal deriva-
tives.

2. Second derivatives, e.g. (ui)xx, (ui)xy, (ui)xz

3. Third derivatives, e.g. (ui)xxx, (ui)xxy, (ui)xxz

4. Conserved variables, ui

5. First derivatives, (ui)x, (ui)y , (ui)z .

Second Derivatives

To proceed, we apply all possible second derivatives with repetition to Eq. (1) to yield the following additional
equations:

∇ ·
∂2hi

∂Ψ1∂Ψ2
= 0, (Ψ1,Ψ2) = {(x, x), (x, y), (x, z), (y, x), (y, y), (y, z), (z, x), (z, y), (z, z)} .

Recall that h = (fx
i , f

y
i , f

z
i , ui) is the space-time flux vector. Aided by the Gauss theorem in the three-

dimensional space-time domain, the above differential equations are recast into the following integral equa-
tions:

∮

∂2hi

∂Ψ1∂Ψ2
· ds = 0 (Ψ1,Ψ2) = {(x, x), (x, y), (x, z), (y, x), (y, y), (y, z), (z, x), (z, y), (z, z)} . (23)
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In the setting of the fourth-order CESE method, (ui)xx is represented by using the first-order Taylor series
expansion with (ui)txx, (ui)xxx, and (ui)yxx as the coefficients. The integration can be straightforwardly
performed based on the original second-order CESE method. Essentially, we invoke the original CESE nine
times to calculate the second order spatial derivatives at the solution point (j, n).

Third Derivatives

Once the second-derivatives are calculated, the third-derivatives of ui listed in Table 1 are calculated by
central-differencing the second derivatives of ui. By slightly modifying the procedure outline in Section II.E
we obtain the third derivatives. For example to determine (ui)xyx, (ui)xyy, (ui)xyz we would obtain







∆x1+ ∆y1+ ∆z1+

∆x2+ ∆y2+ ∆z2+

∆x3+ ∆y3+ ∆z3+













(ui)
(1)
xyx

(ui)
(1)
xyy

(ui)
(1)
xyz






=















[(u′

i)xy(1
+, n)]

n−1/2

1× −
∑A

a=0

∑A−a
b=0

∑A−a−b
c=0

(

∂a+b+cui

∂xa∂yb∂zc

)n

j×0

(∆x
1+)

a
(∆y

1+)
b
(∆z

1+)
c

a!b!c!

[(u′

i)xy(2
+, n)]

n−1/2

2× −
∑A

a=0

∑A−a
b=0

∑A−a−b
c=0

(

∂a+b+cui

∂xa∂yb∂zc

)n

j×0

(∆x
2+)

a
(∆y

2+)
b
(∆z

2+)
c

a!b!c!

[(u′

i)xy(3
+, n)]

n−1/2

3× −
∑A

a=0

∑A−a
b=0

∑A−a−b
c=0

(

∂a+b+cui

∂xa∂yb∂zc

)n

j×0

(∆x
3+)

a(∆y
3+)

b(∆z
3+)

c

a!b!c!















for (a, b, c) 6= (0, 1, 0), (1, 0, 0), (0, 0, 1).

Which simplifies to







∆x1+ ∆y1+ ∆z1+

∆x2+ ∆y2+ ∆z2+

∆x3+ ∆y3+ ∆z3+













(ui)
(1)
xyx

(ui)
(1)
xyy

(ui)
(1)
xyz






=









[(u′

i)xy(1
+, n)]

n−1/2

1× − [(ui)xy]
n
j×0

[(u′

i)xy(2
+, n)]

n−1/2

2× − [(ui)xy]
n
j×0

[(u′

i)xy(3
+, n)]

n−1/2

3× − [(ui)xy]
n
j×0









(24)

Eq. (24) is nearly identical to the equation used to determine the first derivatives in the second-order scheme.
This procedure is then used to determine all other third derivatives.

Conserved Variables

The next step is to update the conserved variables, ui. For this step you use the method outlined in Section
II.D. The only modification required is to set N = 3 in Eqs. (14) and (18). Although the integration over
the top surface uses solutions from the current time step the scheme is still explicit. This is possible because
the second and third derivatives are all ready known and the integration of the first derivatives is zero. This
leaves ui as the only unknown and is easily separated. The integration of the first derivatives are zero, not
the first derivatives them self.

First Derivatives

The first derivatives are calculated using the procedure listed in Section II.E.

III. Results and Discussion

To assess the accuracy of the three-dimensional, unstructured hyperbolic solver, we consider the following
benchmark problems: (i) the advection equation to assess the convergence rate, and (ii) the Euler equation
to simulate supersonic flow over a spherical blunt body.
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III.A. Advection Equation for Convergence

The advection equation, Eq. (25), is used to verify the order convergence of the new scheme.

∂u

∂t
+ ax

∂u

∂x
+ ay

∂u

∂y
+ az

∂u

∂z
= 0 (25)

A solution is assumed to take the form

u = sin(axx+ ayy + azz + att), (26)

the domain is a cube of length 2π and periodic boundary conditions are imposed. Under these assumptions
the wave speeds are ax = ay = az = 1 and at = −(a2x + a2y + a2z). The simulation is allowed to run for
a non-dimensional time of 25 which allows the wave to progress through the domain 25/(2π) times. To
determine the rate of convergence the L2 norm is calculated and compared against a characteristic length.
The characteristic length is taken to be (V olume/ncell)−1/3, where ncell is the number of cells. The result
of the simulation is shown in Figure 3. A best fit line was taken and the convergence rate was determined
to be 4.3 and 2.6 for the fourth and second-order schemes respectively.

10−3

10−2

10−1

100

101

102

103

0.1 1

L
2
n
o
rm

h

4th 2nd

Fig. 3: Convergence test for the 3D convection equation

III.B. Supersonic Flow over a Blunt Body

To determine the schemes capability to resolve discontinuities supersonic flow over a sphere is considered.
The properties of interest are the post shock density, shock standoff distance and the shock profile. For the
simulation the working fluid is air with specific heat ratio 1.4 and a gas constant 287.15 J/kg K. The free
stream Mach number, pressure and density are 3.0, 1 bar, and 1.23 kg/m3 respectively. The radius of the
sphere is 0.5 meters. The simulation was run for 5 thousand iterations at an average CFL number of 0.533.
The post shock density was calculated to be 4.613 kg/m3 which compares favorably to the analytical value
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of 4.744 kg/m3. The shock standoff distance was approximated to be 0.11 which also compares favorably to
the value of 0.10 predicted by Ambrosio and Wortman’s11 relation,

∆ = 0.143R e3.24/M
2
∞ , (27)

where R is the radius of the sphere and M∞ is the free stream Mach number.
The profile of the shock around the sphere is obtained by the relationship generated by Billig12 and is

equal to

x = R+∆−Rc cot
2 θ

[

(

1 +
y2 tan2 θ

R2
c

)0.5

− 1

]

, (28)

where ∆ is the shock stand off distance given by Eq. (27), θ is the Mach angle is equal to sin−1(1/M∞) and
Rc is the radius of curvature and is equal to

Rc = 1.143R e(0.54/(M∞−1)1.2 .

A numerical Schlieren image is shown in Figure 4. This figure shows the shock profile generated by the
simulation and the points represent shock profile generated by Eq. (28). The shock profile predicted by
Eq. (28) agrees favorably with the numerical results.

IV. Concluding Remarks

This paper details the derivation and validation of a new fourth-order CESE method used to solve three-
dimensional hyperbolic PDEs on unstructured tetrahedral meshes. The formulation was found to retain all
favorable features of the original second-order CESE method, including (i) the use of the most compact mesh
stencil involving only the immediate neighboring nodes of the central node where the unknowns are sought,
(ii) the stability constraint of the four-order CESE method remains to be CFL ≤ 1, and (iii) completely
explicit operation in the time marching calculation. To demonstrate the capabilities of the new method,
two test cases were reported: (i) a sinusoidal wave modeled by the advection equation, used to confirm
higher-order convergence (ii) Mach 3 air flow around a spherical blunt body used to determine the schemes
ability to accurately resolve discontinuities. Future work will investigate the effects of various re-weighting
schemes on the accuracy of the results and the development of a three-dimensional Navier-Stokes solver.

A. Side Integration

This section will list selected integrations for the integral in Eq. (14). To start we will define ∆xi = xi−xj ,
∆yi = yi − yj , ∆zi = zi − zj for i = 1, 2, 3. With this definition Eq. (14) becomes

Ls
a,b,c =

∫ 1

0

∫ 1−u

0

3
∏

j=1

[

∆Ψj
2u+∆Ψj

3v +∆Ψj
1 (1− u− v)

]ωj

dvdu,

where Ψ = {x, y, z} and ω = {a, b, c}.
When a = 1 and b = c = 0 the integration is

Ls
1,0,0 =

1

6

3
∑

i=1

∆xi.

When a = b = 1 and c = 0

Ls
1,1,0 =

1

24

[

3
∑

i=1

(∆xi∆yi) +
3

∑

i=1

∆xi

3
∑

i=1

∆yi

]

.
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Fig. 4: Convergence test for the 3D convection equation
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When a = b = c = 1

Ls
1,1,1 =

1

120

[

3
∑

i=1

∆xi

3
∑

i=1

∆yi

3
∑

i=1

∆zi + 2

3
∑

i=1

(∆xi∆yi∆zi)+

3
∑

i=1

(∆xi∆yi)

3
∑

i=1

∆zi +

3
∑

i=1

(∆xi∆zi)

3
∑

i=1

∆yi +

3
∑

i=1

(∆yi∆zi)

3
∑

i=1

∆zi

]

.

Given these three formulas it is possible to easily derive all other integrals for a fourth-order scheme. For
example to obtain the formulation for Ls

2,0,0 one may substitute ∆xi for ∆yi in the formulation for Ls
1,1,0.

B. Bottom and Top Integration

This section will list selected integrations for the integral in Eq. (18). To start we will define ∆xi = xi−xj ,
∆yi = yi − yj , ∆zi = zi − zj for i = 1, 2, 3. With this definition Eq. (18) becomes

Lbt
a,b,c =

∫ 1

0

∫ 1−u

0

∫ 1−u−v

0

3
∏

j=1

[

∆Ψj
2u+∆Ψj

3v +∆Ψj
4w +∆Ψj

1 (1− u− v − w)
]ωj

dwdvdu,

where Ψ = {x, y, z} and ω = {a, b, c}.
When a = 1 and b = c = 0 the integration is

Lbt
1,0,0 =

1

24

4
∑

i=1

∆xi.

When a = b = 1 and c = 0

Lbt
1,1,0 =

1

120

[

4
∑

i=1

(∆xi∆yi) +

4
∑

i=1

∆xi

4
∑

i=1

∆yi

]

.

When a = b = c = 1

Lbt
1,1,1 =

1

720

[

4
∑

i=1

∆xi

4
∑

i=1

∆yi

4
∑

i=1

∆zi + 2

4
∑

i=1

(∆xi∆yi∆zi)+

4
∑

i=1

(∆xi∆yi)

4
∑

i=1

∆zi +

4
∑

i=1

(∆xi∆zi)

4
∑

i=1

∆yi +

4
∑

i=1

(∆yi∆zi)

4
∑

i=1

∆zi

]

.

As with the derivation in Appendix A the other integrals required for a fourth-order scheme are easily
obtained through substituting. For example Lbt

0,1,2 is obtained by substituting ∆zi for ∆xi in the formulation

of Lbt
1,1,1.
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